Finiteness of Profinite Groups with a Rational Probabilistic Zeta Function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a finiteness condition on the coefficients of the probabilistic zeta function

we discuss whether finiteness properties of a profinite group $g$ can be deduced from the coefficients of the probabilisticzeta function $p_g(s)$. in particular we prove that if $p_g(s)$ is rational and all but finitely many non abelian composition factors of $g$ are isomorphic to $psl(2,p)$ for some prime $p$, then $g$ contains only finitely many maximal subgroups.

متن کامل

The Probabilistic Zeta Function

This paper is a summary of results on the PG(s) function, which is the reciprocal of the probabilistic zeta function for finite groups. This function gives the probability that s randomly chosen elements generate a group G, and information about the structure of the group G is embedded in it.

متن کامل

Chaotic Maps with Rational Zeta Function

Fix a nontrivial interval X C R and let / e C1(X,X) be a chaotic mapping. We denote by Aoo (/) the set of points whose orbits do not converge to a (one-sided) asymptotically stable periodic orbit of / or to a subset of the absorbing boundary of X for /. A. We assume that / satisfies the following conditions: (1) the set of asymptotically stable periodic points for / is compact (an empty set is ...

متن کامل

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

Finiteness Properties for Some Rational Poincaré Duality Groups

A combination of Bestvina–Brady Morse theory and an acyclic reflection group trick produces a torsion-free finitely presented Q-Poincaré duality group which is not the fundamental group of an aspherical closed ANR Q-homology manifold. The acyclic construction suggests asking which Q-Poincaré duality groups act freely on Q-acyclic spaces (i.e., which groups are FH(Q)). For example, the orbifold ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2015

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2014.990023